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Dynamic Analysis and Design of Uncertain Systems Against 
Random Excitation Using Probabilistic Method 
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In this paper, a method to obtain the sensitivity of eigenvalues and the random responses of 

the structure with uncertain parameters is proposed. The concept of the proposed method is that 

the perturbed equation of each uncertain substructure is obtained using the finite element 

method, and the perturbed equation of the overall structure is obtained using the mode synthesis 

method. By this way, the reduced order perturbed equation of the uncertain system can be 

obtained. And the response of the uncertain system is obtained using probability method. As a 

numerical example, a simple piping system is considered as an example structure. The damping 

and spring constants of the support are considered as the uncertain parameters. Then the 

variations of the eigenvalues, the correlation function and the power spectral density function 

of the responses are calculated. As a result, the proposed method is considered to be useful 

technique to analyze the sensitivities of eigenvalues and random response against random 

excitation in terms of the accuracy and the calculation time. 

Key W o r d s : R a n d o m  Excitation, Uncertain System, Modal Analysis, Random Vibration 

Analysis, Design of Structure System, Sensitivity Analysis, Probabilistic Method 

1. Introduction 

Studies of random vibration of mechanical 

structures, which consist of industrial occu- 

pancies, such as the power plant, chemical plant 

and the bridge, etc. are very important from the 

view point of disaster protection against random 

excitation. Also, recent developments in jet and 

rocket propulsion have give rise to new problems 

in mechanical and structural vibrations. The 

pressure fields generated by these devices fluctuate 

in a random manner and contain a wide spectrum 
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of frequencies that may result in a severe vibra- 

tion in the aircraft or missile structure. In that 

mechanical component of the structural system, 

the physical parameters and characteristics of 

structures (mass, stiffness and damping coeffi- 

cients) have deviations in the design process, 

manufacturing process or other reasons. Accord- 

ingly, an accurate approach is needed to analyze 

the vibration response and the eigenvalue of the 

structure system against random excitation by 

considering their uncertainty (Bellman, R., 1964). 

From the viewpoint of the dynamic response of 

structures against random excitation, there are 

many investigations (Caravanu, et al., 1973; 

Collins, et al., 1969 ; Yang, et al., 1972 ; Yoshino, 

et al., 1984). They observed the vibration of 

deterministic systems under a random excitation 

with structural systems to obtain the system 

responses. On the other hand, from the viewpoint 
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of the dynamic response of structures with uncer- 

tain parameters, there are many investigations 

(Shigeru, et al., 1985 ; Bharucha, et al., 1968 ; Lin, 

et at., 1980). 

However, there arc few studies that consider 

both structural uncertainty and random excita- 

tion. In the analysis of complex large DOF 

(degree of freedom) structure system, dynamic 

computation of the system requires large order sets 

of equations of motion and it takes much calcula- 

ting time. Therefore, SSM (,substructure synthesis 

method) has been studied in the vibration analy- 

sis (Moon, et al., 1999 ; Moon, et al., 2001). They 

proposed an efficient analytical method of the 

vibration against excitation by applying the SSM 

and PM(perturbation method). To this end, the 

system is divided into some components and those 

are formulated according to FEM (finite element 

method). The perturbed equations are synthesized 

to the overall system and the sensitivity of 

eigenvalue and the random response for the over- 

all system are analyzed. 

In order to illustrate the accuracy and com- 

putation efficiency of the proposed method, a 

structural system with uncertainty under random 

excitation as a calculation example is analyzed 

and evaluated in accordance with the economical 

computation. 

2. Method of Analysis 

In this chapter, an analytical method to obtain 

the sensitivity of eigenvalues and the random res- 

ponses of the structure with uncertain parame- 

ters is introduced by applying probabilistic FEM. 

2,1 Modeling of complex uncertain system 
In this paper, a structural system with large 

DOF is considered, as shown in Fig. I. For the 

dynamic analysis of complex systems, the SSM 

can be applied. The overall system can be divided 

into some components. Then, the equation of 

motion of each components with uncertain 

parameter can be obtained using FEM (Nakagiri, 

et al., 1985). 

[M ] { t i } + [C ] { / l } + [K ] { q }= { f }  (I) 

where { q } is a relative displacement vector from 

an absolute coordinate, which is fixed in base- 

ment. { f } is an random external force vector. 

�9 M], ~C] and [K]  are the mass, damping and 

stiffness matrixes, which include the uncertain 

parameters a, (i=:1,--., N,~). They can be expanded 

about a design value(expected value) in terms of 

a series of the small parameter ~ where the 

uncertain parameter is estimated as a small value. 

Accordingly, the dynamic characteristics of thc 

system can be expressed as 

f " - - :  ~ l + '  <='.'~J- ] A' .,r 

M. [~, M, _ 
! c ]  = [c  + . . . .  

r v - n _ r r . , l O V  x'~ r n - / s  [ ~1~ ~ j - : ~  -'z~e;n ',~--~. ~j:ejz[K~=~] " 
- " " ,v,l - " ~ JL-] . / . ~  

where ~ is a small variant of the uncertain 

parameter at. In this study, the expected value t~,. 

and standard deviation de, of the uncertain 

parameter a~ are regarded to be known. And it is 

regarded that there is no correlation among these 

uncertain parameters. When the system is excited. 

such as seismic force in the vertical direction at 

the supported point, the force term can be 

expressed as 

{ f } = - [ M ~ ~  (3) 

where g( t )  is the acceleration of the seismic 

wave, { I }  is a unit vector which shows the 

direction of excitation, { [ } is used to derive the 

participation vector of excitation. 

2.2 Equations of motion for uncertain sub- 
structure 

Each substructure's equation is formulated se- 

quentially by using the PM to the first order 

according to the SSM procedures, which is 

divided into three substructures, as shown in 

Fig. I. 

Here, a, c and e are the internal region, b and 

d are the assembling region. The equation of 

motion for substructure I can be expressed as 

[Af,'_{ ~l}+EC,]{ (~,)-b[K,]{ q,}={f , }  (4) 

where ~_MI~, [-C~] and [K1] are the mass, 

damping and stiffness matrix of substructure 1, 
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Substructure I Sutl~ttuctt~ra 2 SuDaVucture 3 

a : Internal region of substructure I 
c : Internal region of substructure 2 
e : Internal region of substructure 3 

b, d : Assembling region 

Fig. 1 Substructuring of the system 

respectively. They can be perturbed in accordance 
with uncertain parameter a '~(i=t,  ..., No) as a 

small value 

!7M~ M , ~ ] = [ M / O , ] + ~  es[llqlr''031 
IMp]=  M~, ~ M l s 

= [ K ~  K'.~ .KiO,~ +~,  ~,[Ki~ ] 

where { F~ }, {/ '~ } are the external force of the 
region &, b, respectively. The damping term is 
considered to be proportional to (damping co- 
efficient a) the stiffness term, which is used for 
structural dynamics in general. The substructures 
are synthesized using the modes [(~3, which are 
obtained by constraining the assembling region. 
The displacement { q~a } of internal region a can 
be expressed as 

{ q~a }--{ q~^' }+{ q~a c } (6) 

where { q~'~ } = [ @'] { ~' }, { q~r }=  [ T~ ] { qt }. 
{ ~ }  is a modal participation vector of sub- 
structure I. { q~ } is a static elastic detbrmation 
caused by { q~, }. The sensitivities of eigenvalue 
are defined as 

~h =AI ~ e.AI '~ (7) 

[T~]  is obtained by applying Guyan's method 
to the equation of substructure 1. And [T~]=-  

To apply the SSM, the coordinate transformation 

is carried out 

E~,t }=~T,~]{ } (S) 
where [E,b] is unit matrix. By using this trans- 
formation equation, the equation of substructure 
1 can be expressed 

[M;]{ ~, }+ [C,,] { t, }+ [K,,]( ~" ,}={ Z } 
_[ E,., -M-E l 

[M~ ] = [ T~ ] r [ M' ] [ T~ ] - L-M-~ ~ b  ] 

r - - I  ~ " V LCl~ L T ~ ] r [ C , ] [ T ~ ] = a  A~  0 ] 
L 

[A ~ o i  
[ ~ ] = [ T r  Tr = a  -KT~] 

Ix - 

[A I] is composed of eigenvalues. The equation of 

substructure 2 is obtained by similar procedure 
with substructure I applying the FEM and modal 
analysis. By using the modal matrix and the trans- 
tbrmation equation, the equation of substructure 
2 can be obtained as 

[Y;]~ ( f i } + [E ] {  b )+ [~-]{ ~}--{Y~ } 

[-C~2_=[Tg]r[c.~][T~]=a 0 A' 0 

o R'zA~ (to) 

[ g ] = [ T ~ ] r [ / 5 ] " T ~ ] = |  o A z 

1 ~  0 ?~'~-~ J 

~ } =  , { N } = I T a l Y { A }  --- N 
L q~ 
F ~ !- 1 ',,,'here i.M~j, -Cz,, [K~] are the mass, damping 

and stiffness matrix of substructure 2, respectively. 
{ q~ }, { q~ } are the displacement of assembling 
and the internal region of substructure 2. { F~ }, 
{Fa ~ }, {/~c} are the internal forces. The dis- 
placement { qc 2 } of internal region c is obtained as 

qg 
{ q~ }----[@']{ ~' }4- [ T~ T~] { q~ } (11) 
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where [ ~ ]  is modal matrix, which is obtained 

from the eigenvalue problem of ( i/x'~ ] --~l ~ [M~ _~ ) 
{~ )~}={0}  ( r = l ,  2. "-., n~). Static modes 

[Tg T ~  are obtained by applying Guyan's 
method to the equation of  substructure 2, such as 

[T~ T ~ ] = - [ ~ t ' [ ~  /~.]. 
The coordinate transformation is carried out as 

q~ . 0 0 E . , J "  

Then, { qZ } is transformed into modal coordina- 

tes, By the similar way, the equation of substruc- 
ture 3 obtained in modal coordinates as 

~_.~s's.]{ ~s } - } - I~ {  ~;s}z'-[/~]{ ~'s)={f~~ } (1131) 

Therefore, all of  the equations for substructures 

are obtained in modal coordinates. 

2.3 Mode synthesis of uncertain structure 
and sensitivity analysis 

The overall structure is modeled three com- 
ponents and those equations of  motion were 
obtained and transformed into modal coordinate. 
Then, those equations can be synthesized togeth- 
er. When assembling region is rigid, according to 
the condition for the compatibility of assembling, 
following conditions have to be satisfied. 

{ o, }=( ~, }={ qd }, { q, }={ ,z~ }={ d, } 
{F~' } + { N  }={ o}, {F~ }+{Y,  ~ }={o} 

(14) 

]-RK~-KER'ER~ 

~ TgJi-R~ 
0 0 ~ E . .  

qb [Td]rF~ +F T#] 
~= ~ ,P=[ F~ 

qa ' Tg-~ rF'd~ + [ Tg] rfi,~. I 

e 1 

(15) 

By this way, the reduced order of perturbed 
equation can be obtained using only low modes 
without the analysis of the original overall 

structures. 
Then, the sensitivity of eigenvalue and the ran- 

dom response for the overall system can be 
obtained, which is subjected to change into origi- 
nal coordinates. When the truncated perturbation 
equation of structure are obtained, it can be 
perturbed in accordance with uncertain parameter 
an. Accordingly, general sensitivity analysis of 

eigenvalue can be applied as 

,~,=,~0) + eA?~ (16) 

By superposing each modal equation of 
substructure, and applying above conditions, the 
perturbed equation for the overall structure can 

be obtained 

2.6 Random response analysis using proba- 
bilistic method 

The r~ponsc {q ( t ) }  of  Eq. (1) can be ex- 

pressed approximately as 

M 
_-xx-1-• 

E.~ ~ 0 0 0 ]  
M~ M~ ~-L ~e~ 

o ~ ~ 7 ~ T s  

Mna - M ~  + M ~  

{ q }={ q'~ ~,{ q"~t)} (17) 

By substituting this equation into Eq. (1). the 
equation can be arranged again as 

. , " .0 ) "  - ( 0 ) /  ' , r 0) {0)  r' ] :.'r176162176 ~{q l i b / (  J{q ,t} (18) 

.---{ fz:t!} 
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{M'~ ~'~ (t)}- [ C~~ { ~ (t) }+ [K'~] { q'-~ (t)) 
=-[MU~j{~<~176 ( ~ ( t ) } - [ K ~  ('19) 
={ft~tt)) ( j= l ,  .... :V=) 

From Eq. (18) impulse response function matrix 
~Hr176 can be obtained. Accordingly, using 
impulse respon~ function, the expected value 
{ q(~ of the response and the first order sen- 
sitivity { q~(t)} can be obtained as 

=fo '  [H(~ ( t -  r) ] { f(r) }dr { q(m (t)} 
(20) 

{ ~t'~(t) }= fo~[H(~ r) ]{ f~ r) }dr 

There is a relation between the impulse re- 
sponse function matrix [/-7(~ which is 

obtained from truncated perturbation equation of 
overall system, and [HCm(t)~ as 

[tlt~ ]--[ T~~ ][ TJ~ r (21) 

Thereby, the expected value of the response and 
the first order sensitivity can be rewritten as 

{ ~m] ~ '{ &~, !t-  r)}g(r) dr { (t;}= 
(22) 

{ q~ (t) }= { 7)'~ )] s  ~ (t - r) ] [ ~o~] ,{ fo~ (z:) }dr 

where { tTt~ (t) }---- - [ H  ~~ (t) ] [ T~ ~ r [M(~ { I }. 
Hereby, correlation function of  the response 
[R~(ti. ti)] obtained as 

[ R . ( t , ,  t~) ]  = {  q ( tD } (  q ( t : ) } "  
={  q,O,(t,) }{ q<o,(t~) }r 

- �9 ( 2 3 )  

Here, right side term of thc Eq. (28) is defined as 

{ r (h)){ q(0, (ta)}r 

ZT#'} - ' - ' : hto>,t, n)}{ Ji~0,,.t,-n))rR, 

(n, zt)dndrz[ T~~ ~ 

( C ~ ( t , ) ) {  q<;~(t,)} ~ 

f'Y0"E =[TJ  ~ H(o)(h-r~)[T~~ ' ,,25:' ' 

( fo~ (rz)}r[ TJO,} [/~o, ( t , -  r~)] 'dr, d~[ Tg ~ r 

where Rg(h, tz) is an autocorrelation function 
of g(t).  PSD(Power spectrum density) of the 
response can be obtained by transforming the 

[Rx(tl. tz)] into frequency domain with the PSD 
funr of g(t).  

3. Numerical Examples 

3.1 Model for analysis 

A structure system, which is found easily in 
mechanical structure as shown in Fig. 2, is con- 
sidereal to verify the proposed method. 

The model of the system is constrained at both 

5~;truO:ure 1 . ~tJ:~l~tufe 2 
~ i  . . . . .  

Sc~strudure 3 
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ends. Support of the system is modeled as bearing 

with spring and damping. To apply the SSM, the 

pipe system is divided into 3 components. Those 

components are assembled together in rigid as 

Table 1 Properties of the system 

Length of element 
Material Density 
Young's Modulus 
Outer Diameter 
Inner Diameter 

Spring Coefficient 
kl, kz (k,o) 

Damping Coefficient 
c ,  c~ (c~o'l 

Spring Coefficient 
of Beam kb 

Damping Coefficient 
of Beam c~ 

7.50 Ira: 
7.7X 10 3 [kg/m s] 

2o6.0 x ] o  ~ [N/m 2] 
1.0 [m] 
0.9 [m] 

1.0 • 10 7 ~N,:'m] 

5.4• IN -sec/m] 

1.3X I0 + IN/m] 

6.7 • 102 iN-see/m] 

Table 2 Eigenvalue of the deterministic system 
~, zs damping ratio) 

mode i 
I 

i 
- -  1 . 0 4 - v j  23.2 

w(rad/s; 

23.2 0.045 

2 -- 1.61 + j  38.3 38.3 0.042 

3 -- I.O0--j 59.2 59.2 0.017 

4 --3.28+j 99.8 99.9 0.033 

5 i --6.99+j 149.0 149.0 0.047 

sembling region. FEM model discretizes the dis- 

tributed mass and stiffness properties of each sub- 

structure. Then, using the local dynamic charac- 

teristics obtained for each substructure element, 

the overall system dynamic characteristics are 

obtained. By considering external force and the 

constraints of the system, the equations of 

motion of the overall system can be derived. Total 

degrees of freedom of overall system is 16. In 

this analysis, the damping of the system is 

assumed as the proportional damping of stiffness 

as ?_C++i--ar, Kl+], -+K~] is stiffness matrix of the 

pipe system. The coefficient a(=0.0005) is 

decided with the first mode of the system to 

become 0.05. The damping coefficient c, ( i ---= 1, 2), 

and spring coefficient k i ( i  = I, 2) of the supports 

are subjected to have uncertainty. The properties 

of the system are tabulated in Table I. 

First, the eigenvalue is obtained by regarding 

the system as deterministic system. Modal damp- 

ing ratio is obtained as shown in.Table 2 using 

'. ,;Re(-A,) 2 + I m  (A,) ~. ~+=- Re(A,j  / oJ,, oJi= 

3.2 Sensitivity analysis of uncertain system 
For the analysis, spring coefficient k ~  and 

damping coefficient c~ of support are changed as 

an uncertain parameter. The effect of those vari- 

ance coefficients on the eigenvalue of overall 

2 ........ ]021 I i ._  

<S I ~j,)+a,,, 

1 - 7 0 . I  0.1 
I ~ ' ~ , , , I + ,  
I 

~ - - ' - - - - - - ~  0 0 00 k,+]J~ IO k,]+,,. 20 0 h,.a, 10 i.li,,, N 0 
(a) Real part of eigenvalue Re(Az) (b) Imaginary part of eigenvalue ImfAt) 

Fig. 3 Variation of first natural frequency of the system (k, is changed) 

(a,. . , . 'k?=a,~,.~=o.3, ae, , ,~=a,~,qn-=o.o,  k , = ~ = k , ,  c,=c~=c,)  
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system is reviewed. Base of spring coefficient, 

damping coefficient of the support are regarded 

as equivalent spring coefficient kt,, damping 

coefficient ct,, which are obtained from the first 

eigenvalue of the system. Then. the variation of 

the first eigenvalue is reviewed when the spring 

coefficient, damping coefficient of support are 

changed, ks, k~ are the stiffness of support and 

beam, which come from the modeling of pipe 

system. When kb is fixed, k, is varied to observe 

the effect of changes in eigenvalue of overall 

system, which means the effect of uncertainty. The 

same things can be applied to the damping term. 

Figure 3 shows variation of the eigenvalue, when 

the spring coefficient ks of support is changed by 

fixing the damping coefficient c~. Figure 4 shows 

variation of the eigenvalue, when the damping 

coefficient c, of support is changed by fixing the 

spring coefficient k~0. Figure 4 (a) and (b) show 

real part and imaginary part of eigenvalue varia- 

tion, respectively. It can be concluded from the 

Fig. 3, Fig. 4 that the coefficients of eigenvalue 

variations are relatively small. 

To show the accuracy and effectiveness of pro- 

posed analysis, five different analysis type cases 

are considered 

Case 1; deterministic system, 

Case 2; indeterministic. Hierarchy method, 

Case 3; indeterministic, perturbation method, 

Case 4; indeterministic, proposed method, ado- 

pting 1~4 modes, 

Case 5; indeterministic, proposed method, ado- 

pting 1~2 modes. 

Sensitivity analysis of eigenvalue is carried 

out when the spring coefficient, damping coeffi- 

cient of support at substucture I are uncertain as 

( a c t , / ~ =  ak~,.~-=0.3, a a , / c ~ =  akz,/~=O.O), 
Table 3 shows the result of variation of low 

eigenvalues in the case of 3~5.  The result of 

Monte Carlo simulation(1000 iteration) is also 

Table 3 Coefficient of eigenvalue variation 
(a) Variation of ]st eigenvalue 

Method i . ,. - - . ?-;=__-_zT.:._" , ,aRenA, [aRe~A)r iot.,g, a/, a vI,/---,l) 

Monte Carloi 0.1580 I 0.1506 1.380 0.0599 
I - 4 - - ,  

Case 3 ] 0.1521 : 0.1458 1.304 0.0561 
! - -  

c ~  4 j0.1_~21, 0.1458 L304 0.0s61 

C a s e 5  10.1520; 0.1457 1.302] 

(b) Variation or 2nd eigenvalue 

0.05.61 

! aI.(M I. ..A, 

Monte Carlo I 0.2082 0.1295 1.07.ll 0.0280 

Case 3 ', 0.2084 0,1293 1.084 ': 0.0~3 
I 

Case 4 !0.2084 0.1293 1.084 0.0283 
Case 5 0.1292 0.~83 

i, .... 

i.0.2082 1.083 i 

i, .... ~ I0, i . . . .  i ~ 
" i 

. . . . .  I I / .  _ t ..... I , V '  

100 0 10 0 50 1000 
/ �9 / ~ , ,  

,a) Real part of eigenvalue Rp,',~j (b) Imaginary part of eigenvalue/'m(,~l) 

Fig. 4 Variation of first natural frequency of the system (c, is changed) 

(a,,/k~ = o,2,"k~- = 0,0, an r  a,2,7~ = 0.3, k, = k~ = k,, c, = c~ = c,i. 
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shown. From Table 3, there is good agreement 

between the results of Case 4 and Case 3. The 

result of Case 5, which is reduced order, also 

simulated well with accuracy. Those results are in 

good agreement with the result of Monte-Car lo  

method, which shows variation of eigenvalue in 

good calculation accuracy by the first perturba- 

tion order. 

3.3 Analys i s  of  random response 

The mean square of  the response is obtained 

against the earthquake excitation to the pipe sys- 

tem. The seismic acceleration g ( t )  by earthquake 

can be modeled as stationary, narrow band ran- 

dom process and stationary wide band random 

process. Then, those autocorrelation l?~r(tl, tz) 
and PSD(power  spectrum density) function ~ 

(to) are given readily. In the case of damping 

coefficient of  support is indeterministic, (oct 

,~cl = aav/-~--acJ-c -, a,  l f '~  = a ,  zf]~ =O.O ) are 

considered. Stationary narrow band random pro- 

cess can be expressed as ( r - - I  t i - t .  )) 

R, ( t , ,  t2) = S  exp (,St) cos ( ta , r) ,  

�9 g ( w ) -  2SB (w2t + / ~ +  eye) (26) 

where ~ is coefficient of dominant  frequency. ~0, 

is a dominant frequency. Stationary wide hand 

random process can be expressed as 

R~r(h, t2} = 2 P s i n ( o J . r ) / r ,  ( r = l  t~- t z l ) ,  

{20~r ( [ c ~  a~, (w) = (I oJ 1= o).~ 07 )  

(I oJ I > co.) 

And mean square of both process is introduced 

as to become same value as S = 2 P w , .  Then the 

root mean square value v/x~s of response at nodal 
pint 3 against stationary narrow band random 

process is shown in Fig. 5. Monte Carlo 

simulation (1000 iteration) is also shown together, 

which is regarded as exact solution. Hierarchy 

method of  Case 2 is the result, which is calculated 

to the perturbation 2nd order. Thus, this is closer 
to the exact solution and efficient analyzing 

method compared with the result of Case 3 ~ Case 

5, which are c-lculated to the perturbation first 
order. The re.suits of Case 3 ~ C a s e  5 are almost 

2 7 ,  
__ J Moat4 Carlo M~vthod 

2o5.*o 
Fig, 5 

P m $ , 6 | $  x l O - ' { m t / . w -  -:) 
*-,. - -SO0.Ol f - , ' * / ~ r  

i 
21 . . . . . . . .  0 o.2 o. 

.If vanm4~a o.1~ 

Mean ~lu~r~ of response (narrow band) 

.I !- 
3 ! 

S,9.0(m21,~:'*) 
p -  0.2 / 

M~rtte Carlo Meth~>d / /  

~ 3  '-, 5 

| , i 

C, oalki,  nt of Vm*m~ms f , l  *~ 

Fig. 6 Mean square of response (wide band) 

same. This is estimated that dominant frequency 

w~ of excitation is close to the first natural fre- 

quency of the system. Thus, accurate result is 

obtained in spite of neglecting higher modes. 

The root mean square value ,/'~-3 of response at 

nodal point 3 against stationary wide band ran- 
dom process is shown in Fig. 6. Also, Hierarchy 

method of  Case 2 is close to the exact solution. 

The results of  Case 3-Case5 are almost same. 

This is estimated that frequency range of exci- 

tation include all of the natural frequency of the 

system. Nevertheless, the modal  damping ratio of  
higher modes are bigger than the modal damping 

ratio of lower modes. Thus, there is no effect of 

higher modes excitation in the response. 
PSD ~xs(w) of response against stationary 
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narrow band random process and stationary wide 

band random process are shown in Fig. 7 and 

Fig. 8, respectively. There is a high value around 

the first natural frequency because the modal 

damping ratio of higher modes are bigger than the 

modal damping ratio of lower modes. 

To show the effectiveness of the proposed 

method, the calculation time is compared. When 

analyzing the correlation function of response, the 

calculation time is compared. Case 3 is regarded 

as a normal of calculation time. Case 4 takes same 

time with the Case 3. Case 5 takes about 0.15 
times of Case 3. This comes from the effect of 

reduced order of degrees of  freedom. 

4. C o n c l u s i o n  

In this paper, a method to obtain the sensitivity 

of eigenvalues and the random responses of the 

structure with uncertain parameters using a pro- 

babilistic method is proposed. According to the 

proposed method, the reduced order perturbed 

equation for the overall system is obtained with- 

out analysis of the original overall structures even 

though the overall structure is large system. As a 

numerical example, a simple structure system is 

considered, which has a uncertain parameter. 

Then the variations of the eigenvalue and the 

random responses are calculated. The accurate 

results are obtained comparing with the other 

general method in spite of reducing the DOF. As 

a re, suit, the proposed method is proved to be an 

useful technique to analyze the sensitivity of 

eigenvalues and random response against random 

excitation in terms of the accuracy and the calcu- 

lation time. 
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